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Abstract

Using precision electroweak data, we put limits on non-commuting extended
technicolor models. We conclude that these models are viable only if the ETC-
interactions are strong. Interestingly, these models predict a pattern of devia-
tions from the standard model which can fit the data significantly better than
the standard model does, even after taking into account the extra parameters
involved.
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1 Introduction

There continue to be several small discrepancies between precision electroweak mea-
surements and the predictions of the standard model [1, 2, 3]. The most interesting
is associated with the ratio of the Z decay widths to bb and to all hadrons (Rb).
In addition if αs(MZ) ≈ 0.115, as suggested by recent lattice results [4] and deep-
inelastic scattering [1, 5], there are also potentially significant deviations in the
ratios of the hadronic to leptonic widths. If new physics which increased Rb were
present, a better fit to precision electroweak data would be obtained with a value
of αs(MZ) comparable to the value quoted above [6].

Recently it was shown that in non-commuting extended technicolor (ETC) mod-
els, in which in which the ETC interactions [7] do not commute with the SU(2)L

interactions of the standard model (i.e., in which SU(2)L is partially embedded in
the ETC gauge group), Rb could exceed the standard model value [8]. In that dis-
cussion, we assumed that only the (t, b) doublet had non-commuting ETC couplings
suppressed by a scale low enough to provide observable consequences at present ma-
chines. From the point of view of anomaly cancellation, it is much more economical
to assume that the entire third generation has the same non-commuting ETC in-
teractions. Such a scheme implies that the electroweak interactions of the τ and ντ

will also exhibit interesting deviations.
In this paper we will use the wealth of precision electroweak data to place

constraints on such non-commuting ETC family models. After reviewing non-
commuting ETC models, we discuss the deviations from the standard model that
this new physics would produce. We discuss the amount of fine-tuning these models
require to accommodate the top quark mass and to agree with the precision elec-
troweak data. We conclude that these models predict a pattern of deviations from
the standard model which can fit the data significantly better than the standard
model does, even after taking into account the extra parameters involved.

2 Non-Commuting Extended Technicolor

2.1 Gauge Symmetry-Breaking Pattern

The pattern of gauge symmetry breaking that is required in non-commuting ETC
models is more complicated than that in commuting ETC models; it generally
involves three scales (rather than just two) to provide masses for one family of
ordinary fermions. The required pattern of breaking is as follows:

GETC ⊗ SU(2)light ⊗ U(1)′

↓ f

GTC ⊗ SU(2)heavy ⊗ SU(2)light ⊗ U(1)Y

↓ u

GTC ⊗ SU(2)L ⊗ U(1)Y
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↓ v

GTC ⊗ U(1)em,

The ETC gauge group is broken to technicolor and an SU(2)heavy subgroup at
the scale f . The SU(2)heavy gauge group is effectively the weak gauge group for
the third generation in these non-commuting ETC models, while the SU(2)light is
the weak gauge group for the two light generations. The two SU(2)’s are mixed
(i.e. they break down to a diagonal SU(2)L subgroup) at the scale u. Finally the
electroweak gauge symmetry breaking is accomplished at the scale v, as is standard
in technicolor theories.

The two simplest possibilities for the SU(2)heavy × SU(2)light transformation
properties of the order parameters that produce the correct combination of mixing
and breaking of these gauge groups are:

〈ϕ〉 ∼ (2, 1)1/2, 〈σ〉 ∼ (2, 2)0 , “heavy case” , (2.1)

and
〈ϕ〉 ∼ (1, 2)1/2, 〈σ〉 ∼ (2, 2)0 , “light case” . (2.2)

Here the order parameter 〈ϕ〉 is responsible for breaking SU(2)L while 〈σ〉 mixes
SU(2)heavy with SU(2)light. We refer to these two possibilities as “heavy” and
“light” according to whether 〈ϕ〉 transforms non-trivially under SU(2)heavy or SU(2)light.

The heavy case, in which 〈ϕ〉 couples to the heavy group, is the choice made in
[8], and corresponds to the case in which the technifermion condensation responsible
for providing mass for the third generation of quarks and leptons is also responsible
for the bulk of electroweak symmetry breaking (as measured by the contribution
made to the W and Z masses). The light case, in which 〈ϕ〉 couples to the light
group, corresponds to the opposite scenario: here the physics responsible for provid-
ing mass for the third generation does not provide the bulk of electroweak symmetry
breaking. While this light case is counter-intuitive (after all, the third generation is
the heaviest!), it may in fact provide a resolution to the issue of how large isospin
breaking can exist in the fermion mass spectrum (and, hence, the technifermion
spectrum) without leaking into the W and Z masses. This is essentially what hap-
pens in multiscale models [11, 12] and in top-color assisted technicolor [13]. Such
hierarchies of technifermion masses are also useful for reducing the predicted value
of S in technicolor models1 [15].

2.2 Top Quark Mass Generation

In ETC models the top quark mass [7] is generated by four-fermion operators in-
duced by ETC gauge boson exchange. In non-commuting ETC models, the left-
handed third generation quarks and right-handed technifermions, ψL = (t, b)L and

1Recently the experimental upper bound on S has been relaxed, so that substantially positive
values of S are allowed. Ref. [14] gives S < 0.4 at the 95% confidence level.
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TR = (U,D)R, are doublets under SU(2)heavy while the left-handed technifermions
are SU(2)heavy singlets, and these operators may be written as

L4f = − 2
f2

(
ξψ̄Lγ

µUL +
1
ξ
t̄Rγ

µTR

)(
ξŪLγµψL +

1
ξ
T̄RγµtR

)
, (2.3)

where ξ is a model-dependent Clebsch. When the technifermions condense the LR
cross-terms in the operator (2.3) produce a top quark mass. In strong-ETC models,
i.e. models in which the ETC coupling is fine-tuned to be close to the critical value
necessary for the ETC interactions to produce chiral symmetry breaking, the LR-
interactions become enhanced. Physically, this is due to the presence of a composite
scalar [10] which is light compared to f and communicates electroweak symmetry
breaking to the top quark.

Whether or not the ETC interactions are strong, we can write the top quark
mass as [7]

mt ≈
g24πf3

Q

M2
, (2.4)

where the numerator contains an estimate of the technifermion condensate (using
dimensional analysis [9]), and fQ is the Goldstone boson decay constant associated
with the technifermions which feed down a mass to the top quark. In the heavy
case the technifermions responsible for giving rise to the third-generation masses
also provide the bulk of the W and Z masses, and we expect fQ ≈ 125 GeV (which,
for mt ≈ 175 GeV, implies M/g ≈ 375 GeV). Even in the light case there must
be some SU(2)heavy breaking vev, that is fQ 6= 0, in order to give the top-quark a
mass. However, it is unreasonable to expect that M/g can be tuned to be smaller
than fQ and equation (2.4) implies the lower bound fQ > 14 GeV.

In an ETC theory with no fine-tuning, M represents the mass of the ETC gauge
boson, which is related to f by

M =
gf

2
, (2.5)

where g is the ETC gauge coupling. In strong-ETC theories [16], g2 is the product
of the scalar couplings to the top quark and the technifermions and M is the mass
of the light composite scalar [10]. In the context of these theories, the “accuracy”
with which the ETC gauge coupling must be adjusted is approximately equal to
the ratio of M2/g2 to its naive value, f2/4. That is, a rough measure of fine-tuning
required is

4M2

g2f2
≈

8πf3
Q

mtf2
. (2.6)
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2.3 Shifts in Z Couplings

As discussed in Ref. [8], the LL (and, in principle, RR) terms in the operator (2.3)
produce a shift in the Zbb coupling:

δgb
L = −

ξ2f2
Q

2f2
. (2.7)

(For convenience, we have factored out e/ sin θ cos θ from all the Z couplings.) The
difference between the scenario proposed in Ref. [8] and that proposed here is that
here the entire third family couples to the same ETC gauge bosons, so there will
also be corrections for the τ and ντ couplings:

δgτ
L = δgντ

L = −ξ
2f2

L

2f2
, (2.8)

where we have allowed for the possibility that the technilepton condensate is differ-
ent from the techniquark condensate (i.e. fQ 6= fL).

From the analysis given in Ref. [8], we see that in the absence of fine-tuning we
expect the four-fermion operator (2.3) to induce corrections to the third-generation
couplings of the order of a few percent. Our fits to precision electroweak mea-
surements will allow us to put a lower bound on the size of f . We will translate
this, using equation (2.6) into an estimate of the amount of fine-tuning required to
produce a viable theory.

3 Weak Boson Mixing: Heavy Case

The remaining corrections come from weak gauge boson mixing2. The U(1)em to
which the electroweak group breaks is generated by

Q = T3l + T3h + Y . (3.1)

The photon eigenstate can be written in terms of two weak mixing angles,

Aµ = sin θ sinφWµ
3l + sin θ cosφWµ

3h + cos θXµ , (3.2)

where θ is the weak angle and φ is an additional mixing angle. Equations (3.1) and
(3.2) imply that the gauge couplings are

gl =
e

s sin θ
,

gh =
e

c sin θ
,

g′ =
e

cos θ
, (3.3)

2The discussion of gauge boson mixing presented in this section and the next follows the dis-
cussion of mixing in the un-unified standard model given in Refs. [17, 18].
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where s ≡ sinφ and c ≡ cosφ.
Consider the low energy weak interactions in the four-fermion approximation.

For the charged-currents, if we combine the left-handed light and heavy fermion cur-
rents into the vector J† = (jl, jh), then the four-fermion interactions are 2 J† V −2 J
where

V −2 =
1

u2 v2

(
u2 + v2 u2

u2 u2

)
. (3.4)

Retaining the standard relation between the µ decay rate and GF requires

√
2GF =

1
v2

+
1
u2

. (3.5)

Hence the charged-current four-fermion weak interactions can be written

2
√

2GF (jl + jh)2 − 2
u2

(j2h + 2jljh ) . (3.6)

The extra jljh term will affect the weak decays of third-generation fermions. For
example, the effect on the tau decay rate to muons is illustrated in Appendix A
(equation (A.22)). The low-energy neutral-current interactions can be obtained
similarly in terms of jem, the electromagnetic fermion current, and j3l,3h, the left-
handed T3 currents of light- and heavy-charged fermions. Applying (3.5) gives

2
√

2GF (j3l + j3h − jem sin2 θ)2 (3.7)

− 2
u2

[
−j23h − 2j3lj3h + sin2 θ jem(2j3h + 2j3lc

2 + jem sin2 θ(s4 − 1))
]
.

Note that the extra neutral-current interactions involving third generation fermions
are suppressed only by v2/u2, whereas those involving only charged first and second
generation fermions are additionally suppressed by mixing angles.

It is convenient to discuss the mass eigenstates in the rotated basis

W±
1 = sW±

l + cW±
h , (3.8)

W±
2 = cW±

l − sW±
h , (3.9)

Z1 = cos θ (sW3l + cW3h)− sin θ X , (3.10)
Z2 = cW3l − sW3h , (3.11)

in which the gauge covariant derivatives separate neatly into standard and non-
standard pieces

Dµ = ∂µ + ig
(
T±

l + T±
h

)
W±µ

1 + ig

(
c

s
T±

l − s

c
T±

h

)
W±µ

2

+ i
g

cos θ

(
T3l + T3h − sin2 θ Q

)
Zµ

1 + ig

(
c

s
T3l −

s

c
T3h

)
Zµ

2 . (3.12)
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where g ≡ e
sin θ . The breaking of SU(2)L results in mixing of Z1 and Z2, as well as

a mixing of W±
1 and W±

2 . The mass-squared matrix for the Z1 and Z2 is:

M2
Z =

(
ev

2 sin θ

)2
(

1
cos2 θ

−s
c cos θ

−s
c cos θ

x
s2c2

+ s2

c2

)
, (3.13)

where x = u2/v2. The mass-squared matrix for W1 and W2 is obtained by setting
cos θ = 1 in the above matrix.

Diagonalizing the W and Z mass matrices in the limit of large x and taking into
account the value of GF given in equation (3.5), we find for the lightest eigenstates

M2
W ≈

(
παem√

2GF sin2 θ

)(
1 +

1
x

(1− s4)
)
, (3.14)

WL ≈W1 +
cs3

x
W2 (3.15)

and
M2

Z ≈
(

παem√
2GF sin2 θ cos2 θ

)(
1 +

1
x

(1− s4)
)
, (3.16)

ZL ≈ Z1 +
cs3

x cos θ
Z2 . (3.17)

Note that to this order in 1/x, the custodial isospin relation for the W and Z masses
is preserved.

Thus, weak gauge boson mixing produces a shift from the standard model Z
couplings:

δgf
L =

cs3

x

(
c

s
T3l −

s

c
T3h

)
. (3.18)

Furthermore, the relationship between MZ , GF , and sin2 θ given in equation (3.16)
differs from that in the standard model3. Both effects must be taken into account
in comparing the predictions of this model with those of the standard model.

The result of all these corrections is that the predicted values of many elec-
troweak observables are altered from those given by the standard model4 [18, 19].
For example, we find that the W mass is changed as follows:

MW = (MW )SM

(
1− 0.213

(
1− s4

) 1
x

)
. (3.19)

Likewise, one finds that the total width of the Z becomes:

ΓZ = (ΓZ)SM

(
1− 0.707δgb

L − 0.144δgτ
L + 0.268δgντ

L

+
(
1.693s2c2 − 0.559s4 − 1.350

(
1− s4

)) 1
x

)
. (3.20)

3In the notation of Ref. [19], we can account for this effect by the replacement ∆e + ∆µ =
(1− s4)/x.

4We are using αem(MZ), GF , and MZ as the tree-level inputs.
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The full list of changes to the electroweak observables that we use in our fits for the
heavy case non-commuting ETC model appears in Appendix A.

Finally, we can combine previously obtained expressions for the masses of the
heavy W boson and the top quark to constrain x. The analysis of the mass matrix
shows that the mass of the heavy W gauge boson is

MH
W ≈

√
x

sc
MW . (3.21)

If we combine this equation with the estimate of the top mass given in equation
(2.4) , we find

MH
W ≈ 210 GeV

sc

(
175 GeV

mt

) 1
2
(

3fQ

v

) 3
2
(
u

f

)
. (3.22)

The last two factors on the right hand side of this equation are written so that they
are of the order of, or less than, unity when there is no fine-tuning of the ETC
interactions. Therefore, we find

MH
W ≤ 210 GeV

sc
(3.23)

which, together with (3.21), implies that

x ≤ 6.9 (3.24)

assuming the absence of strong-ETC fine-tuning or an alternative mechanism for
generating the top mass. As we will see in section 5, these bounds will not be
satisfied: some fine-tuning will be required.

4 Weak Boson Mixing: Light Case

The four-fermion operators induced by ETC gauge boson exchange produce the
same corrections in both the heavy and the light case. The differences between
the two cases arises in the low energy weak interactions and in how the breaking
of SU(2)L mixes Z1 and Z2, and W±

1 and W±
2 . In the light case, retaining the

standard relation between the µ decay rate and GF yields

√
2GF =

1
v2

. (4.1)

The charged-current four-fermion weak interactions are of the form

2
√

2GF (jl + jh)2 +
2
u2
j2h (4.2)
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while the low-energy neutral-current interactions can be written

2
√

2GF (j3l + j3h − jem sin2 θ)2 +
2
u2

(j3h − s2 sin2 θjem)2 . (4.3)

Note that this time the charged-current weak interactions contain no new jljh term,
so that the weak decays of third-generation fermions will not be altered from their
standard rates (see e.g. Appendix B, equation (B.22)).

An analysis of weak gauge boson mixing shows that the mass-squared matrix
for the Z1 and Z2 is:

M2
Z =

(
ev

2 sin θ

)2
(

1
cos2 θ

c
s cos θ

c
s cos θ

x
s2c2

+ c2

s2

)
. (4.4)

The mass-squared matrix for W1 and W2 is obtained by setting cos θ = 1 in the
above matrix. We again diagonalize the W and Z mass matrices in the limit of
large x and find

M2
W ≈

(
παem√

2GF sin2 θ

)(
1− c4

x

)
, (4.5)

WL ≈W1 −
c3s

x
W2 (4.6)

and

M2
Z ≈

(
παem√

2GF sin2 θ cos2 θ

)(
1− c4

x

)
, (4.7)

ZL ≈ Z1 −
c3s

x cos θ
Z2 . (4.8)

Once again, the custodial isospin relation for the W and Z masses is preserved, to
this order in 1/x.

Thus, in this case the weak gauge boson mixing produces the following shift
from the standard model Z couplings:

δgf
L = −c

3s

x

(
c

s
T3l −

s

c
T3h

)
. (4.9)

The difference in the relationship between GF , MZ , and sin2 θ in equation (4.8)
and the corresponding relationship in the standard model must also be taken into
account5.

As in the heavy case, the predicted values of electroweak observables are altered
from those given by the standard model [18, 19]. For example, we find that the W
mass is altered as follows:

MW = (MW )SM

(
1 + 0.213 c4

1
x

)
. (4.10)

5In this case, using the notation of Ref. [19], we can account for the effect by the replacement
∆e + ∆µ = −c4/x.
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Likewise, one finds that the total width of the Z is changed to:

ΓZ = (ΓZ)SM

(
1− 0.707δgb

L − 0.144δgτ
L + 0.268δgντ

L

+
(
−0.343c4 + 0.559s2c2

) 1
x

)
. (4.11)

The full list of changes to the electroweak observables used in our fits for the light
case non-commuting ETC model is given in Appendix B.

5 Comparison with Data

Using the current experimental values of the electroweak observables and the cor-
responding best-fit standard model predictions, we have used the equations given
in Appendices A and B to fit the heavy case and light case non-commuting ETC
model predictions to the data. Our analysis determines how well each model fits
the data, and whether fine-tuning of the ETC interactions is required.

Even before performing multi-variable fits to the precision electroweak data, we
can place a constraint on this class of models. We must require that technicolor
coupling at the ETC scale, f , not be so strong as to exceed the “critical” value at
which technifermion chiral symmetry breaking occurs. If we use the results of the
gap-equation analysis of chiral symmetry breaking in the “rainbow” approximation
[20] to estimate this value, we find that [8]

c2 > 0.03

(
N2 − 1

2N

)
, (5.1)

where we have assumed that the technifermions form a fundamental representation,
N , of an SU(N) technicolor group.

Before describing the details of the fit, we discuss higher-order corrections. Be-
yond tree-level, the predictions of the standard or non-commuting ETC models
depend on the values of αs(MZ) and the top-quark mass mt. Given the success
of the standard model, we expect that, for the allowed range of s2, 1/x, and the
various δg’s, the changes in the predicted values of physical observables due to ra-
diative corrections in the standard model or non-commuting ETC models will be
approximately the same for the same values of αs(MZ) and mt.

The best-fit standard model predictions which we use [1] are based on a top
quark mass of 173 GeV (taken from a fit to precision electroweak data) which is
consistent with the range of masses (176±13 GeV) preferred by CDF and consistent
with D0 [22].

The treatment of αs(MZ) is more problematic: the LEP determination for
αs(MZ) comes from a fit to electroweak observables assuming the validity of the
standard model. For this reason it is important [6] to understand how the bounds
vary for different values of αs(MZ). We present results for bounds on s2, 1/x, and
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the δg’s, both for αs(MZ) = 0.124 (which is the LEP best-fit value assuming the
standard model is correct [1]) and for αs(MZ) = 0.115 as suggested by recent lattice
results [4] and deep-inelastic scattering [1, 5]. To the accuracy to which we work,
the αs dependence of the standard model predictions only appears in the Z partial
widths and we use [1]

Γq = Γq|αs=0

(
1 +

αs

π
+ 1.409

(
αs

π

)2

− 12.77
(
αs

π

)3
)

(5.2)

to obtain the standard model predictions for α(MZ) = 0.115.
We have performed a global fit for the parameters of the non-commuting ETC

model (s2, 1/x, and the δg’s) to all precision electroweak data: the Z line shape,
forward backward asymmetries, τ polarization, and left-right asymmetry measured
at LEP and SLC; the W mass measured at FNAL and UA2; the electron and neu-
trino neutral current couplings determined by deep-inelastic scattering; the degree
of atomic parity violation measured in Cesium; and the ratio of the decay widths
of τ → µνν̄ and µ→ eνν̄. Essentially we find that, while both the heavy and light
cases provide a better fit to the data than the standard model, the light case can
reproduce the data with much smaller gauge boson masses, and hence is of more
phenomenological interest.

In Table 1 we compare the predictions of the standard model and the non-
commuting ETC model (with particular values of 1/x and s2) with the experimental
values. For s2, we have chosen a value of 0.97 which saturates our bound (5.1), since
this conforms to our expectation that the ETC gauge coupling is quite strong. For
1/x, in the heavy case we show the best fit value of 1/x = 0.0027 or equivalently
MH

W = 9 TeV. The choice of a particular value of 1/x for the light case is fairly
arbitrary. We do not show the best fit case, since it lies the unphysical region of
negative x (the fit gives 1/x = −0.17± 0.75). However, since the fit is fairly insen-
sitive to the value of 1/x (i.e. the uncertainty in 1/x is large) there is a substantial
range of values for 1/x which provide a good fit to the data. For illustration we
have chosen the value 1/x = 0.055 which corresponds to MH

W = 2 TeV.

5.1 The Light Case

We will first discuss the light case in some detail. We have fit the precision elec-
troweak data to the expressions in Appendix B, allowing s2, 1/x, and the δg’s to
vary. Figure 1 summarizes the fits by displaying the 95% and 68% confidence level
lower bounds (solid and dotted lines) on the heavy W mass (MH

W ) for different
values of s2 (using αs(MZ) = 0.115 as before). The plot was created as follows: for
each value of s2 we fit to the three independent parameters (δgb

L, δgτ
L = δgντ

L , and
1/x); we then found the lower bound on x and translated it into a lower bound on
the heavy W mass. Note that for s2 > 0.85, the 95% confidence level allows the
heavy W gauge boson to be as light as 400 GeV.
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Quantity Experiment SM ETCheavy ETClight

ΓZ 2.4976 ± 0.0038 2.4923 2.4991 2.5006
Re 20.86 ± 0.07 20.73 20.84 20.82
Rµ 20.82 ± 0.06 20.73 20.84 20.82
Rτ 20.75 ± 0.07 20.73 20.74 20.73
σh 41.49 ± 0.11 41.50 41.48 41.40
Rb 0.2202 ± 0.0020 0.2155 0.2194 0.2188
Ae

FB 0.0156 ± 0.0034 0.0160 0.0159 0.0160
Aµ

FB 0.0143 ± 0.0021 0.0160 0.0159 0.0160
Aτ

FB 0.0230 ± 0.0026 0.0160 0.0164 0.0164
Aτ (Pτ ) 0.143 ± 0.010 0.146 0.150 0.150
Ae(Pτ ) 0.135 ± 0.011 0.146 0.146 0.146
Ab

FB 0.0967 ± 0.0038 0.1026 0.1026 0.1030
Ac

FB 0.0760 ± 0.0091 0.0730 0.0728 0.0730
ALR 0.1637 ± 0.0075 0.1460 0.1457 0.1460
MW 80.17 ± 0.18 80.34 80.34 80.34

MW /MZ 0.8813 ± 0.0041 0.8810 0.8810 0.8810
g2
L(νN → νX) 0.3003 ± 0.0039 0.3030 0.3026 0.3030
g2
R(νN → νX) 0.0323 ± 0.0033 0.0300 0.0301 0.0300
geA(νe→ νe) -0.503 ± 0.018 -0.506 -0.506 -0.506
geV (νe→ νe) -0.025 ± 0.019 -0.039 -0.038 -0.039
QW (Cs) -71.04 ± 1.81 -72.78 -72.78 -72.78
Rµτ 0.9970 ± 0.0073 1.0 0.9946 1.0

Table 1: Experimental [1, 2, 21] and predicted values of electroweak observables
for the standard model and non-commuting ETC model (heavy and light cases) for
αs(MZ) = 0.115, and s2 = 0.97. For the heavy case 1/x is allowed to assume the
best-fit value of 0.0027; for the light case, 1/x is set to 0.055. The standard model
values correspond to the best-fit values (with mt = 173 GeV, mHiggs = 300 GeV) in
[1], corrected for the change in αs(MZ), and the revised extraction [23] of αem(MZ).
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As mentioned previously, the predictions of the non-commuting ETC model in
the light case are given in Table 1. The question remains as to how well this model
fits the precision data. The summary of the quality of the fit is given in Table 2. The
table shows the fit to the standard model for comparison; as a further benchmark
we have included a fit to purely oblique corrections (the S and T parameters) [24].
The percentage quoted in the Table is the probability of obtaining a χ2 as large
or larger than that obtained in the fit, for the given number of degrees of freedom
(df), assuming that the model is correct. Thus a small probability corresponds to
a poor fit, and a bad model. The SM + S, T fit demonstrates that merely having
more parameters is not sufficient to ensure a better fit.

Model χ2 df χ2/df probability
SM 33.8 22 1.53 5%
SM+S,T 32.8 20 1.64 4%
ETClight 22.6 20 1.13 31%

Table 2: The best fits for the standard model, beyond the standard model allowing
S and T to vary, and the non-commuting ETC model (light case). The inputs are:
αs(MZ) = 0.115, 1/x = 0.055, and s2 = 0.97. χ2 is the sum of the squares of the
difference between prediction and experiment, divided by the error.

The best fit values for the shifts in the Z couplings (corresponding to Tables 1
and 2, i.e. the light case with αs(MZ) = 0.115) are:

δgb
L = −0.0035± 0.0015

δgτ
L = δgντ

L = −0.0002± 0.0009 . (5.3)

The 90% confidence region for this fit is shown as the solid line in Figure 2. From
equation (5.3) and Figure 2 we see that the data prefers a significant shift in the
Zbb coupling.

Using the values above and equation (2.7) we can obtain a 95% limit on the
scale f :

f > ξ · 123 GeV. (5.4)

Using equation (2.6) we see that we require a fine-tuning of the ETC coupling of
order:

4M2

g2f2
≈ 52%

(
fQ

30 GeV

)3(123 GeV
f

)2(175 GeV
mt

)
. (5.5)

From Tables 1 and 2 we see that because the theory accommodates changes in the Z
partial widths, the non-commuting ETC model gives a significantly better fit to the
experimental data than the standard model does, even after taking into account that
in the fitting procedure the non-commuting ETC model has two extra parameters.
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Model χ2 df χ2/df probability
SM 27.8 21 1.33 15%
SM+S,T 27.7 20 1.38 12%
ETClight 25.0 20 1.25 20%

Table 3: The best fits for the standard model, beyond the standard model allowing
S and T to vary, and the non-commuting ETC model (light case). The inputs are:
αs(MZ) = 0.124, 1/x = 0.055, and s2 = 0.97.

In particular the non-commuting ETC model predicts values for ΓZ , Re, Rµ, Rτ ,
and Rb that are closer to experiment than those predicted by the standard model.

For comparison we have also performed the fits using αs(MZ) = 0.124; the
quality of the fit is summarized in Table 3. The best fit values for the shifts in the
Z couplings (corresponding to Table 3, i.e. the light case with αs(MZ) = 0.124)
are:

δgb
L = −0.0013± 0.0015

δgτ
L = δgντ

L = −0.0003± 0.0009 . (5.6)

The 90% confidence region for this fit is shown as the dashed line in Figure 2. We
find that, while the standard model fit improves for a larger value of αs(MZ), the
light case of the non-commuting ETC model remains a somewhat better fit.

5.2 The Heavy Case

For the heavy case, we have fit the precision electroweak data to the expressions in
Appendix A, allowing s2, 1/x and the δg’s to vary. Our results are summarized in
Figure 3, which displays the 95% and 68% confidence lower bounds on the heavy
W boson (solid and dotted lines) as a function of s2. For comparison, we show the
upper bound (dashed line) on the heavy W mass that is supplied by equation (3.23)
in the absence of fine-tuned ETC interactions. No region of the plot satisfies both
bounds, i.e. the model must be fine tuned in order to produce the top mass and
agree with precision measurements. Allowing for the possibility of some fine tuning,
the lowest possible heavy W mass at the 95% confidence level is roughly 1.6 TeV,
for 0.7 < s2 < 0.8. This corresponds to f > 2 TeV, and hence a tuning of order

4M2

g2f2
≈ 14%

(
fQ

125 GeV

)3(2 TeV
f

)2(175 GeV
mt

)
. (5.7)

A summary of the quality of the global fit to the precision electroweak data is
given in Table 4. We conclude that the heavy case also gives a good fit to the data,
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Model χ2 df χ2/df probability
SM 33.8 22 1.53 5%
SM+S,T 32.8 20 1.64 4%
ETCheavy 20.7 19 1.09 36%

Table 4: The best fits for the standard model, the standard model plus extra oblique
corrections, and the non-commuting ETC model (heavy case). The inputs are
αs(MZ) = 0.115, and (for the ETC model) s2 = 0.97.

but the masses of the new gauge boson are substantially heavier than in the light
case.

The best fit values for the parameters (corresponding to Tables 1 and 4, i.e. the
heavy case with αs(MZ) = 0.115) are:

1/x = 0.0027± 0.0093
δgb

L = −0.0064± 0.0074 (5.8)
δgτ

L = δgντ
L = −0.0024± 0.0055 .

6 Conclusions

Surprisingly we have found that both cases of the non-commuting ETC model can
give a significantly better fit to experimental data than the standard model, even
when one takes into account the fact that the ETC model has extra parameters
that are fit to data. Part of this relative success of course is due to the fact that the
standard model does not fit the data very well (contrary to current folklore), espe-
cially if αs(MZ) = 0.115. One might object that the non-commuting ETC model
is not an aesthetically pleasing model. Furthermore both the heavy and light cases
required some fine-tuning. Nonetheless, our results provide a significant existence
proof: there is at least one ETC model that can fit the precision electroweak data
better than the standard model. The light case of this non-commuting ETC model
is especially interesting since the heavy gauge bosons can be lighter than 1 TeV,
and hence could potentially be directly produced at foreseeable accelerators.
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A Appendix: Equations for heavy case

The full list of corrections [8, 19] to standard model predictions in the ‘heavy case’
of non-commuting ETC is:

ΓZ = (ΓZ)SM

(
1− 0.707δgb

L − 0.144δgτ
L + 0.268δgντ

L

+
(
1.693s2c2 − 0.559s4 − 1.350

(
1− s4

)) 1
x

)
(A.1)

Re = (Re)SM

(
1− 1.01δgb

L +
(
−0.313s2c2 − 0.505s4 − 0.260

(
1− s4

)) 1
x

)
(A.2)

Rµ = (Rµ)SM

(
1− 1.01δgb

L +
(
−0.313s2c2 − 0.505s4 − 0.260

(
1− s4

)) 1
x

)
(A.3)

Rτ = (Rτ )SM

(
1− 1.01δgb

L + 4.290δgτ
L

+
(
1.832s2c2 + 1.640s4 − 0.260

(
1− s4

)) 1
x

)
(A.4)

σh = (σh)SM

(
1 + 0.404δgb

L + 0.288δgτ
L − 0.536δgντ

L

+
(
0.591s2c2 + 0.614s4 + 0.022

(
1− s4

)) 1
x

)
(A.5)

Rb = (Rb)SM

(
1− 3.56δgb

L +
(
−1.832s2c2 − 1.780s4 + 0.059

(
1− s4

)) 1
x

)
(A.6)

Ae
FB = (Ae

FB)SM +
(
0.430s2c2 − 0.614

(
1− s4

)) 1
x

(A.7)

Aµ
FB = (Aµ

FB)SM +
(
0.430s2c2 − 0.614

(
1− s4

)) 1
x

(A.8)
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Aτ
FB = (Aτ

FB)SM − 0.430δgτ
L +

(
0.215s2c2 − 0.215s4 − 0.614

(
1− s4

)) 1
x

(A.9)

Aτ (Pτ ) = (Aτ (Pτ ))SM − 3.610δgτ
L +

(
−1.805s4 − 2.574

(
1− s4

)) 1
x

(A.10)

Ae(Pτ ) = (Ae(Pτ ))SM +
(
1.805s2c2 − 2.574

(
1− s4

)) 1
x

(A.11)

Ab
FB =

(
Ab

FB

)
SM

− 0.035δgb
L +

(
1.269s2c2 − 0.017s4 − 1.828

(
1− s4

)) 1
x

(A.12)

Ac
FB = (Ac

FB)SM +
(
1.003s2c2 − 1.433

(
1− s4

)) 1
x

(A.13)

ALR = (ALR)SM +
(
1.805s2c2 − 2.574

(
1− s4

)) 1
x

(A.14)

MW = (MW )SM

(
1− 0.213

(
1− s4

) 1
x

)
(A.15)

MW /MZ = (MW /MZ)SM

(
1− 0.213

(
1− s4

) 1
x

)
(A.16)

g2
L(νN → νX) =

(
g2
L(νN → νX)

)
SM

− 0.244
(
1− s4

) 1
x

(A.17)

g2
R(νN → νX) =

(
g2
R(νN → νX)

)
SM

+ 0.085
(
1− s4

) 1
x

(A.18)

geA(νe→ νe) = (geA(νe→ νe))SM (A.19)

geV (νe→ νe) = (geV (νe→ νe))SM + 0.656
(
1− s4

) 1
x

(A.20)

QW (Cs) = (QW (Cs))SM +
(
−21.16 c2 + 1.450

(
1− s4

)) 1
x

(A.21)

Rµτ ≡
Γ(τ → µνν̄)
Γ(µ→ eνν̄)

= RSM
µτ (1− 2

x
) (A.22)

B Appendix: Equations for light case

We obtain the following corrections [19, 8] to standard model predictions in the
light case of the non-commuting ETC models:

ΓZ = (ΓZ)SM

(
1− 0.707δgb

L − 0.144δgτ
L + 0.268δgντ

L

+
(
−0.343c4 + 0.559s2c2

) 1
x

)
(B.1)

Re = (Re)SM

(
1− 1.01δgb

L +
(
0.573c4 + 0.505s2c2

) 1
x

)
(B.2)

Rµ = (Rµ)SM

(
1− 1.01δgb

L +
(
0.573c4 + 0.505s2c2

) 1
x

)
(B.3)
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Rτ = (Rτ )SM

(
1− 1.01δgb

L + 4.29δgτ
L +

(
−1.572c4 − 1.640s2c2

) 1
x

)
(B.4)

σh = (σh)SM

(
1 + 0.404δgb

L + 0.288δgτ
L − 0.536δgντ

L

+
(
−0.613c4 − 0.614s2c2

) 1
x

)
(B.5)

Rb = (Rb)SM

(
1− 3.56δgb

L +
(
0.129c4 + 1.780s2c2

) 1
x

)
(B.6)

Ae
FB = (Ae

FB)SM + 0.184c4
1
x

(B.7)

Aµ
FB = (Aµ

FB)SM + 0.184c4
1
x

(B.8)

Aτ
FB = (Aτ

FB)SM − 0.430δgτ
L +

(
0.399c4 + 0.215s2c2

) 1
x

(B.9)

Aτ (Pτ ) = (Aτ (Pτ ))SM − 3.610δgτ
L +

(
2.574c4 + 1.805s2c2

) 1
x

(B.10)

Ae(Pτ ) = (Ae(Pτ ))SM + 0.769c4
1
x

(B.11)

Ab
FB =

(
Ab

FB

)
SM

− 0.035δgb
L +

(
0.520c4 + 0.161s2c2

) 1
x

(B.12)

Ac
FB = (Ac

FB)SM + 0.400c4
1
x

(B.13)

ALR = (ALR)SM + 0.769c4
1
x

(B.14)

MW = (MW )SM

(
1 + 0.213c4

1
x

)
(B.15)

MW /MZ = (MW /MZ)SM

(
1 + 0.213c4

1
x

)
(B.16)

g2
L(νN → νX) =

(
g2
L(νN → νX)

)
SM

− 0.529c4
1
x

(B.17)

g2
R(νN → νX) =

(
g2
R(νN → νX)

)
SM

+ 0.850c4
1
x

(B.18)

geA(νe→ νe) = (geA(νe→ νe))SM + 0.500c4
1
x

(B.19)

geV (νe→ νe) = (geV (νe→ νe))SM − 0.156c4
1
x

(B.20)

QW (Cs) = (QW (Cs))SM + 95.05c4
1
x

(B.21)

Rµτ ≡
Γ(τ → µνν̄)
Γ(µ→ eνν̄)

= RSM
µτ (B.22)
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Figure Captions

Figure 1. The solid line is the 95% confidence lower bound for MH
W as a func-

tion of s2 for the light case (using αs(MZ) = 0.115). The dotted line is the 68%
confidence lower bound.

Figure 2. The 90% confidence region for ETC induced shifts in Z couplings for
the light case (using 1/x = 0.028 and s2 = 0.97) for αs(MZ) = 0.115 (solid line),
and αs(MZ) = 0.124 (dashed line). Note that the standard model prediction (the
origin) is excluded for αs(MZ) = 0.115.

Figure 3. The solid line is the 95% confidence lower bound for MH
W as a function

of s2 for the heavy case (using αs(MZ) = 0.115). The dotted line is the 68%
confidence lower bound. The dashed line is the upper bound on MH

W (in the absence
of ETC fine-tuning). Note that there is no overlap region.
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